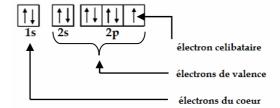
Le fluor et ses composés

Proposé par Ahmed NARJIS / CRMEF marrakech

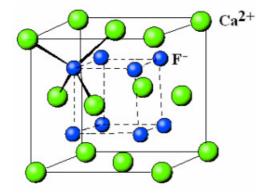

1. Le fluor et les halogènes :

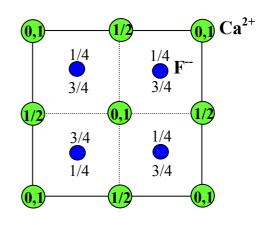
1.1. Les halogènes sont situés sur la 17ème colonne , donc la configuration électronique externe est ns^2np^5 (où $ns^2(n-1)d^{10}np^5$ à partir de n=4). Or d'après l'énoncé, le fluor est situé dans la deuxième période donc n=2.

D'où la configuration du fluor à l'état fondamental : $F: 1s^22s^22p^5$

Un atome du fluore contient 2 électrons du cœur et 7 électrons de valence (voir figure).

Il y'a un seul électron célibataire (voir figure).


- 1.2. L'atome du fluor est composé de 9 électrons et un noyau contenant 9 protons et 10 neutrons.
- 1.3. Dans une colonne, l'électronégativité diminue si Z croit, donc le fluor est le plus électronégatif.
- **1.4.** l'ion le plus stable d'un halogène X est celui, dont la configuration électronique ressemble à celle du gaz rare qui le suit, donc sous forme X^- . Donc n.o = -I pour l'ion halogénure.
- **1.5.** Pour acquérir la configuration électronique du gaz rare qui le suit l'halogène X donne l'ion halogénure, note X^{-} .
- **1.6.** Chaque atome d'halogène à besoin d'un électron. Chaque atome contribue par son électron pour former une liaison simple dans la molécule X_2 (Principe de stabilité).
- **1.7.** Le schéma de LEWIS de HF et F_2 : $H \longrightarrow \overline{F}$
- 1.8. Le rayon de Van Der Waals augmente avec Z.
 La température de changement d'état est proportionnelle à la masse molaire.


2. Structure cristalline du fluorure de calcium :

- **2.1.** La configuration électronique du calcium : Ca : 1s²2s²2p⁶3s².

 L'ion du calcium le plus stable est Ca²⁺, celui du fluor est F⁻, d'où la stoechiométrie : CaF₂.

 C'est un composé ionique.
- 2.2. La maille de la fluorine :

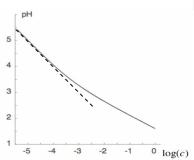
- **2.3.** La coordinence de F⁻ est 4 (car il occupe un site tétraédrique formé par les cations Ca²⁺). La coordinence de Ca²⁺ est 8 (chaque ion Ca²⁺ est entouré de 8 anions F⁻). La coordinence 8 :4 est en accord avec la stoechiométrie CaF₂.
- **2.4.** Le nombre de motifs : $F^- = 8$ (tous les sites tétraédriques) , $Ca^{2+} = 4$ (CFC). Puisque $8 F^-$ et $4 Ca^{2+}$ d'où la formule CaF_2 . (la maille contient 4 entités CaF_2).

2.5. La masse volumique :
$$\rho_{CaF_2} = \frac{4M(CaF_2)}{N_A.a^3}$$
 A.N : $\rho_{CaF_2} = 3240kg / m^3$

3. Acidité de l'acide fluorhydrique :

3.1.

$$HF + H_2O \stackrel{Ka}{\longleftarrow} F^- + H_3O^+ \qquad (1)$$


$$C \sim 0 \qquad \varepsilon$$

$$C(1-\alpha) \sim C\alpha \qquad C\alpha$$

$$Ka = \frac{\left[F^{-}\right]\left[H_{3}O^{+}\right]}{\left[HF\right]}$$
 soit $Ka = \frac{C\alpha^{2}}{(1-\alpha)}$

3.2.1. Graphe (a): Si la concentration diminue, le dissociation est totale (Loi de dilution d'OSWALD).Graphe (b): pour de concentrations faibles la courbe du pH

 $\label{eq:Graphe} \begin{array}{l} \underline{Graphe\ (b)} : pour\ de\ concentrations\ faibles\ la\ courbe\ du\ pH \\ en\ fonction\ de\ log(c)\ est\ une\ droite\ de\ pente\ (-1)\ ,\ soit \\ pH = -logC\ .\ L'acide\ se\ comporte\ comme\ fort. \end{array}$

3.2.2.
$$pKa = -\log(C) - 2\log\alpha + \log(1-\alpha)$$
 A.N: $pKa = 3,20$

3.2.3.
$$C = \frac{Ka(1-\alpha)}{\alpha^2}$$
 A.N: $C \simeq 2.10^{-4} \, mol \, / \, L$
 $pH = -\log[H_3O^+] = -\log(C\alpha)$ A.N: $pH = 3.8$

4. Solubilité du chlorure de calcium :

4.1.

$$CaF_{2(s)}$$
 \leftarrow Ca^{2+} + $2F$ $excés$ 0 0 $excés$ s $2s$

$$Ks = [Ca_{2+}][F^-]^2 = 4s^3$$

4.2. La solubilité molaire :
$$s_o = \sqrt[3]{\frac{K_s}{4}}$$
 A.N : $s_o = 2,15.10^{-4} \, mol \, / \, L$.

4.3. La solubilité :
$$s = \left[Ca^{2+}\right] = \frac{\left[F^{-}\right] + \left[HF\right]}{2} = \frac{\left[F^{-}\right]}{2} \left(1 + \frac{\left[HF\right]}{\left[F^{-}\right]}\right) = \frac{1}{2} \sqrt{\frac{Ks}{\left[Ca^{2+}\right]}} \left(1 + \frac{\left[HF\right]}{\left[F^{-}\right]}\right)$$

$$s^{2} = \frac{1}{4} \frac{Ks}{s} \left(1 + \frac{\left[HF\right]}{\left[F^{-}\right]}\right)^{2} \qquad s = \sqrt[3]{\frac{Ks}{4} \left(1 + \frac{h}{Ka}\right)^{2}} = \sqrt[3]{\frac{Ks}{4} \left(1 + 10^{pKa - pH}\right)^{2}}$$

(La loi de modération universelle; si on ajoute des ions oxonium H_3O^+ , ils consomme les ions fluorure, ce qui favorise d'avantage la dissolution du solide CaF_2).

4.4. Pour pH = 6,
$$[F^-] >> [HF]$$
, dans ce cas $s^3 \simeq \frac{Ks}{4} = s_6^3$ on trouve: $\underline{s_6} = 2,15.10^{-4} \, mol \, / \, L$
Pour pH = 1, $[F^-] << [HF]$, dans ce cas $s_1 = \sqrt[3]{\frac{Ks}{4}} 10^{2(pKa-pH)}$ soit: $\underline{s_1} = 6,3.10^{-3} \, mol \, / \, L$

Commentaire : la solubilité augmente si on acidifie le milieu.

4.5. CaF_2 et BaF_2 ont même stoechiometrie et puisque K's > Ks alors BaF_2 est le plus soluble .

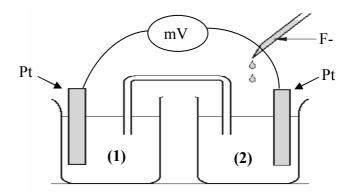
5. Production de l'acide fluorhydrique :

- **5.1.** La variance $V = N r q + 2 \varphi = 4$ -1-0+2-4 , soit V = 1 (système monovariant). Si T est fixée (par exemple), la composition du système est parfaitement définie.
- **5.2.** Le nombre de moles du gaz augmente, donc $\Delta_r S_3^o > 0$.

$$\Delta_r S_3^o = -\frac{\partial \Delta_r G_3^o}{\partial T} = +502,25 - 47,7 \ln T, \text{ positif } \forall \theta \in [100^{\circ}C,300^{\circ}C].$$

- **5.3.** L'enthalpie : $\Delta_r H_3^o = \Delta_r G_3^o + T.\Delta_r S_3^o = 84.10^3 47,7.T$ positive $\forall \theta \in [100^{\circ}C,300^{\circ}C]$, la réaction est endothermique.
- **5.4.** Si on diminue la pression, l'équilibre se déplace dans le sens d'augmentation du nombre de moles du gaz, donc dans le sens direct. Si on diminue la température, l'équilibre se déplace dans le sens exothermique, donc dans le sens inverse.

Conclusion : La synthèse de HF à faible pression (et à hautes températures).


- **5.5.** A partir de la relation $\Delta_r G_3^o + RT \ln K_3 = 0$, on trouve: $K_3 = 1,76 \cdot 10^5$
- **5.6.** La conversion complète de la fluorine entraı̂ne une rupture d'équilibre :

Remarque: On peut montrer que l'équilibre est rompu en calculant l'avancement final, on trouve dans ce cas une valeur supérieur à l'avancement maximal(2820mol). Impossible !!!

6. Mesure de la constante de dissociation d'un complexe fluoré :

6.1.
$$FeF^{2+}$$
 F_e^{3+} + F^- : $K_d = \frac{[Fe^{3+}][F^-]}{[FeF^{2+}]}$

6.2.1.

6.2.2. Le rôle du pont salin : permet le passage du courant électrique dans la pile (circulation des ions) et assure la neutralité électrique des solutions.

Remarque : si on remplace le pont par un fil conducteur, la pile ne peut pas débiter le courant électrique même si la f.e.m est non nulle .

6.2.3. Le premier bêcher:
$$Fe^{3+} + 1e = Fe^{2+}$$
: $E_1 = E^o + \frac{0.06}{1} log \frac{[Fe^{3+}]}{[Fe^{2+}]}$: A.N $E_1 = 0.77V$.

6.2.4. Une mole de sel de Mohr apporte une mole de Fe^{2+} : $[Fe^{2+}] = \frac{n_o}{V}$.

Une mole d'Alun ferrique apporte une mole de Fe²⁺ : $[Fe^{3+}] = \frac{2n'_o}{V}$

On trouve:
$$[Fe^{2+}] = [Fe^{3+}] = 1,0.10^{-2} mol / L$$

6.2.5.1. Le potentiel de l'électrode : $E_2 = E_1 - e = 0.52V$.

6.2.5.2. On a:
$$E_2 = E^o + 0.06 \log \frac{\left[Fe^{3+}\right]_{libre}}{\left[Fe^{2+}\right]}$$
 on trouve: $\left[Fe^{3+}\right]_{libre} = 6.81.10^{-7} \, mol \, / \, L$

6.2.5.3.

$$F_e^{3+}$$
 + $F^ \xrightarrow{\searrow_{Kd}}$ FeF^{2+}
 $1,010^{-2}M$ 10.10^{-2} 0
 $\varepsilon = 4,67.10^{-7}$ 9.10^{-2} $1,010^{-2}$

$$K_d = 6,13.10^{-6}$$